
The Repository Pattern

Context
In many applications, the business logic accesses data from data stores such as databases, SharePoint lists, or Web

services. Directly accessing the data can result in the following:

Duplicated code•

A higher potential for programming errors•

Weak typing of the business data•

Difficulty in centralizing data-related policies such as caching•

An inability to easily test the business logic in isolation from external dependencies•

Objectives
Use the Repository pattern to achieve one or more of the following objectives:

You want to maximize the amount of code that can be tested with automation and to isolate the data layer

to support unit testing.

•

You access the data source from many locations and want to apply centrally managed, consistent access

rules and logic.

•

You want to implement and centralize a caching strategy for the data source.•

You want to improve the code's maintainability and readability by separating business logic from data or

service access logic.

•

You want to use business entities that are strongly typed so that you can identify problems at compile

time instead of at run time.

•

You want to associate a behavior with the related data. For example, you want to calculate fields or enforce

complex relationships or business rules between the data elements within an entity.

•

You want to apply a domain model to simplify complex business logic.•

Solution
Use a repository to separate the logic that retrieves the data and maps it to the entity model from the business

logic that acts on the model. The business logic should be agnostic to the type of data that comprises the data

source layer. For example, the data source layer can be a database, a SharePoint list, or a Web service.

The repository mediates between the data source layer and the business layers of the application. It queries the

data source for the data, maps the data from the data source to a business entity, and persists changes in the

business entity to the data source. A repository separates the business logic from the interactions with the

underlying data source or Web service. The separation between the data and business tiers has three benefits:

It centralizes the data logic or Web service access logic.•

It provides a substitution point for the unit tests.•

It provides a flexible architecture that can be adapted as the overall design of the application evolves.•

There are two ways that the repository can query business entities. It can submit a query object to the client's

business logic or it can use methods that specify the business criteria. In the latter case, the repository forms the

Page 1 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

query on the client's behalf. The repository returns a matching set of entities that satisfy the query. The following

diagram shows the interactions of the repository with the client and the data source.

Interactions of the repository

The client submits new or changed entities to the repository for persistence. In more complex situations, the client

business logic can use the Unit of Work pattern. This pattern demonstrates how to encapsulate several related

operations that should be consistent with each other or that have related dependencies. The encapsulated items

are sent to the repository for update or delete actions. This guidance does not include an example of the Unit of

Work pattern. For more information, see Unit of Work on Martin Fowler's Web site.

Repositories are bridges between data and operations that are in different domains. A common case is mapping

from a domain where data is weakly typed, such as a database or SharePoint list, into a domain where objects are

strongly typed, such as a domain entity model. One example is a database that uses IDbCommand objects to

execute queries and returns IDataReader objects. Another example is SharePoint, which uses SPQuery objects to

return SPListItem collections. A repository issues the appropriate queries to the data source, and then it maps the

result sets to the externally exposed business entities. Repositories often use the Data Mapper pattern to translate

between representations. Repositories remove dependencies that the calling clients have on specific technologies.

For example, if a client calls a catalog repository to retrieve some product data, it only needs to use the catalog

repository interface. For example, the client does not need to know if the product information is retrieved with

SQL queries to a database or Collaborative Application Markup Language (CAML) queries to a SharePoint list.

Isolating these types of dependences provides flexibility to evolve implementations.

Implementation Details
This section discusses the implementation strategies for SharePoint list repositories and Web service repositories.

SharePoint List Repositories
The following diagram illustrates the interactions of a SharePoint list repository with SharePoint lists and the

business logic.

Interactions of a SharePoint list repository

Using the Repository pattern in a SharePoint application addresses several concerns.

Page 2 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

SharePoint applications often store business information in SharePoint lists. To retrieve data from

SharePoint lists requires careful use of the SharePoint API, knowledge of the GUIDs that are related to the

lists and their fields, and a working knowledge of CAML. Repositories centralize this logic.

•

The amount of code that is required to query or update a SharePoint list item is enough to warrant its

encapsulation into helper methods. When Web Forms, event receivers, and workflow business logic all

require access to the same lists, the code that accesses the SharePoint lists can be duplicated throughout

the application. This can make the application prone to bugs and difficult to maintain. Repositories

eliminate this duplication.

•

Without a repository, the application is difficult to unit test because the business logic has direct

dependencies on the SharePoint lists. Repositories centralize the access logic and provide a substitution

point for the unit tests.

•

Externally, the repository exposes strongly-typed business entities. Internally, it works with SharePoint-specific

objects, such as the SPQuery and the SPListItem objects. The SharePoint Guidance Library, which is a part of this

guidance, provides classes for mapping and querying that make it easier to build repositories for SharePoint lists.

The ListItemFieldMapper class converts strongly-typed business entities to and from SPListItem objects based

on a set of mapping definitions. The CAMLQueryBuilder class builds SPQuery objects based on common query

operations. The SPQuery object is used to query a SharePoint list.

The following sections show how the repository pattern is implemented in the SharePoint Guidance Library. For

more information, see List-Based Repositories.

SharePoint Guidance Library Helper Classes
The following diagram shows the major components of a SharePoint list repository.

Components of a SharePoint list repository

The list repository contains a query object and a data mapper object that are specific to SharePoint. These are the

ListItemFieldMapper and CAMLQueryBuilder classes. The data mapper translates between an SPListItem and

the business entity that is defined by the application. The query object internally constructs an SPQuery object

and uses CAML to query the list.

Note:

When you design a SharePoint list repository, keep in mind that a list can contain fields from multiple content

types. The logic that is implemented in the ListItemFieldMapper and CAMLQueryBuilder objects does not

prevent fields from multiple content types from being retrieved. In some cases, if the content types have the

same parent content type, you can use a single repository to project a common view across these content

types.

However, it is generally inadvisable to create repositories that deal with dissimilar content types and return

different business entities from the same repository. In this situation, create a repository for each content type

because the content types logically represent different entities.

Page 3 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

Implementation Variations
When you create a SharePoint list repository, you should consider how the repository locates the list that it is

going to access. A list typically resides in a site, and it can be accessed either through its Uniform Resource

Identifier (URI) or its GUID. The repository needs one of these, but passing this information to a repository can be

challenging if you use the repository in conjunction with a service location. For more information, see The Service

Locator Pattern.

There are three ways in which a repository can access a list:

A list can be centrally located. In this case, a repository is associated with a list that is at a fixed location.

All sites retrieve the data from this central location. The PartnerPromotionsRepository class in the

Partner Portal application is an example of a repository that uses such as list.

•

A list can be accessed relative to the current site context. In this case, a repository is associated with a

list whose location is relative to the current site. The IncidentManagementRepository class in the Partner

Portal application is an example of such a repository.

•

A list can be accessed according to a context that is supplied by a consumer. In this case, only the

consumer of the repository knows which list the repository should access. There is no example of this in

the Partner Portal application. However, you can extend the Training Management application to support

this use case. You can implement a repository that accesses the list of training courses for your department

on your local installation and also accesses related training courses that are located on another

departmental site. In this case, the consumer instructs the repository to target a particular list.

•

The following sections describe more details about how to associate repositories with lists.

Lists That Are Centrally Accessed from a Fixed Location
In this case, a list is at a fixed location, and all sites access it from this central point. Its location cannot be

determined based on the current context. Although it is possible to hard code the location of the list, this is not

recommended, because the topology of the site can change. It is often better to make the location of the list a

configuration setting. In that case, defining the list's location is an administrative task. The location is established

when the site topology is set up.

For example, the Partner Portal application centrally manages the published promotions for all partners by

locating them on one site collection. Partners see their particular promotions on their collaboration home pages.

Each partner collaboration site is hosted in its own site collection. This establishes security boundaries and isolates

the data intended for one partner from the data intended for another partner. Because the relationship between

the list and consumers of the list is based on the operational topology, the list location is defined with

configuration data.

The following are characteristics of a list with a fixed location:

There is typically only one instance of that list within the Web application scope. •

The location of the list is determined when the site topology is designed or when the site is installed. •

The list location should be retrieved from configuration data that is shared by all consumers. This data is

typically at the Web application level or Web farm level.

•

The following diagram shows the flow of information among components that access a list at a central location.

Associating a repository with a list at a central location

Page 4 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

The service locator constructs a repository object, which then reads the configuration information. The repository

accesses the list based on this data. Because the repository relies on the configuration data, it can be constructed

independently of the application context. It does not need any additional information from the list consumers.

This approach is susceptible to run-time exceptions because it depends on configuration data, which can be

erroneous, lost, or corrupted. Make sure that you provide adequate diagnostics that inform IT administrators of

any configuration errors. Problems that are caused by configuration errors are difficult to resolve without

adequate logging information.

Lists with a Location That Is Fixed, Relative to the Current

Context
In this case, the repository is associated with a list whose location is fixed, relative to the current context. For

example, in the Training Management application, registration and course lists are located at the same relative

location within a site. However, there can be several Training Management sites within a SharePoint farm. In this

situation, the list repository is loaded from the current context.

The following are characteristics of a list with a location that is relative to the context:

The list has a fixed location that is relative to a site (an SPWeb object).•

The location is independent of the site topology.•

The list location is based on the current SharePoint context.•

The following diagram shows the components and flow of information that access a list with a location that is

relative to the context.

Associating a repository with a list whose location is relative to the context

SharePoint often has a number of instances of the same Web application. In this situation, the repository gets the

current site from the SharePoint context (the SPContext.Current.Web object) and loads the list information from

this context. Because this relationship is fixed relative to the current site, the repository needs no additional

information. The repository instance can be directly constructed by the service locator.

Lists Whose Context Is Supplied by a Consumer
In this case, the repository is associated with a particular content type and can access any list that has SPListItems

of this content type. The consumer must provide context to the repository. For example, the consumer might

Page 5 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

provide the SPWeb object that holds the list or the GUID of the list. Although it is generally a good practice to

keep technology-specific dependencies (such as a reliance on SQL Server) out of the repository interface,

providing context when the repository is constructed is an accepted, widely used practice.

This scenario occurs with sites that have a dynamic topology, or where relationships are established by a user who

supplies configuration information. If you add or remove sites at run time that contain lists that the repository

accesses, you often have to provide the context. An example is if you use the Finance training site to view courses

but you also want to see the courses on the Human Resources training site.

To provide this capability, you can build a general purpose Web Part to view the courses from other departmental

training sites. You can add this Web Part to the Finance training site and configure it to view the related Human

Resources department courses. The repository that the Web Part on the Finance site uses receives the location of

the Human Resources course list as context information when the Web Part constructs it.

One challenge with this type of repository is using it in combination with the SharePoint Guidance Library service

locator. The ActivatingServiceLocator class can only use parameterless constructors for the repositories. It is not

possible to pass the contextual information (in this case, the location of the list) into the repository through the

constructor. One way to solve this is to pass the location of the list with each method call, but this inserts a

dependency on the list's URL into the interface definition. The Training Management application uses this

approach.

A better, but more complicated way to pass the location of the list to the repository is to use a factory. The factory

includes a method that creates the repository. The consumer passes the location of the list to the method. The

consumer then uses the ActivatingServiceLocator to access the factory and uses it to create the repository. With

this approach, the consumer provides the location of the list to the factory, which in turn creates the repository.

The factory passes the context through the repository constructor. This technique is known as constructor

injection.

The following are characteristics of a list whose context is supplied by a consumer:

The consumer can determine which list the repository should access.•

The location of the list is often determined at run time. •

This list location is derived from the current business context.•

The following diagram shows the components and flow of information that are involved in accessing a list whose

context is supplied by the consumer.

Associating a repository with a list whose context is supplied by the consumer

The consumer constructs the context for the repository. The consumer retrieves an instance of a repository factory

from the service locator. The consumer then uses the repository factory to construct the repository. The consumer

provides the context for the list. The repository uses this information to locate the list. Because the repository is

decoupled from both the configuration data and the context, it is suitable for many scenarios. However, because

the consumer provides the context, it increases the coupling between the consuming code and the repository.

Page 6 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

Web Service Repositories
A common backing store for data is a business service that is exposed by a line-of-business (LOB) application.

Generally, these business services are at a higher level of abstraction than the standard

Create/Read/Update/Delete (CRUD) semantics of a database or SharePoint list. However, from the perspective of

the client, they often are equivalent to a data source. Like with SharePoint lists, accessing Web services can be

complex and prone to error. A repository centralizes the access logic for a service and provides a substitution

point for unit tests. Note that services are often expensive to invoke and benefit from caching strategies that are

implemented within the repository.

The following diagram shows a service back-end repository that uses caching.

Using a repository with a Web service

In this case, the query logic in the repository first checks to see whether the queried items are in the cache. If they

are not, the repository accesses the Web service to retrieve the information. Although it is possible to access

services directly, it is also possible to access them through the SharePoint Business Data Catalog (BDC). The BDC

can aggregate several data sources, including Web services, and expose them through a uniform, generic

interface. The BDC allows you to use standard Web Parts to display and modify data. For more information, see

Consuming Web Services with the Business Data Catalog (BDC).

You may need more complex security options than the BDC supports. In this situation, you can use the Windows

Communication Foundation (WCF). This requires that your own code and configuration data manage the service

information and security context. For more information, see Integrating Line-of-Business Systems.

Repository Examples
For an example of the list repository pattern, see Development How-to Topics. Also, the Partner Portal application

includes the following list repositories that can be used as starting points:

The Partner Promotion Repository is in the PartnerPromotionRepository.cs file of the

PartnerPortal\Contoso.PartnerPortal.Promotions directory. There is also a mock implementation for unit

testing in the PartnerPromotionsPresenterFixture.cs file of the

PartnerPortal\Contoso.PartnerPortal.Promotions.Tests directory.

•

The Business Event Type Configuration Repository is in the BusinessEventTypeConfigurationRepository.cs

file of the Microsoft.Practices.SPG2

\Microsoft.Practices.SPG.SubSiteCreation\BusinessEventTypeConfiguration directory. There is also a mock

implementation for unit testing in the ResolveSiteTemplateFixture.cs file of the Microsoft.Practices.SPG2

\Microsoft.Practices.SPG.SubSiteCreation.Tests directory.

•

The Subsite Creation Requests Repository is in the SubSiteCreationRequestsRepository.cs file of the

directory Microsoft.Practices.SPG2\Microsoft.Practices.SPG.SubSiteCreation\SubSiteCreationRequests.

•

Page 7 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

For an example of the data repository pattern using Web services, see the following areas of the reference

implementation:

The Incident Management Repository is in the IncidentManagementRepository.cs file of the directory

PartnerPortal\Contoso.LOB.Services.Client\Repositories.

•

The Pricing Repository is in the PricingRepository.cs file of the directory

PartnerPortal\Contoso.LOB.Services.Client\Repositories.

•

The Cached BDC Product Catalog Repository is in the CachedBdcProductCatalogRepository.cs file of the

directory PartnerPortal\Contoso.LOB.Services.Client\Repositories. There is also a mock implementation for

unit testing in the ProductDetailsPresenterFixture.cs file of the directory

PartnerPortal\Contoso.PartnerPortal.ProductCatalog.Tests.

•

The Partner Portal application also contains two other repositories:

The Full Text Search IncidentTask Repository uses SharePoint Search as its data source. This repository is

found in the FullTextSearchIncidentTaskRepository.cs file of the directory

PartnerPortal\Contoso.PartnerPortal.Collaboration.Incident\Repositories.

•

The Partner Site Directory uses the site directory list to provide the Partner site collection URL and the user

profile to provide the PartnerID. The repository is implemented in the PartnerSiteDirectory.cs file of the

directory PartnerPortal\Contoso.PartnerPortal.PartnerDirectory.

•

For more information about the Repository pattern, Unit of Work pattern, and Data Mapper pattern, see

Repository on Martin Fowler's Web site.

Considerations
The Repository pattern increases the level of abstraction in your code. This may make the code more difficult to

understand for developers who are unfamiliar with the pattern. Although implementing the pattern reduces the

amount of redundant code, it generally increases the number of classes that must be maintained.

The Repository pattern helps to isolate both the service and the list access code. Isolation makes it easier to treat

them as independent services and to replace them with mock objects in unit tests. Typically, it is difficult to unit

test the repositories themselves, so it is often better to write integration tests for them.

When caching data in a multithreaded environment, consider synchronizing access to the cache in addition to the

cached objects. Often, common caches, such as the ASP.NET cache, are already thread safe, but you must also

ensure that the objects themselves can operate in a multithreaded environment.

If you are caching data in heavily loaded systems, performance can be an issue. Consider synchronizing access to

the data source. This ensures that only a single request for the data is issued to the list or back-end service. All

other clients rely on the retrieved data. For more information, see Techniques for Aggregating List and Site

Information.

Related Patterns
The following two patterns are often used in conjunction with the Repository pattern:

Data Mapper. This pattern describes how to map data to different schemas. It is often used to map

between a data store and a domain model.

•

Unit of Work. This pattern keeps track of everything that happens during a business transaction that

affects the database. At the conclusion of the transaction, it determines how to update the database to

conform to the changes.

•

Page 8 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

Home page on MSDN | Community site

© 2013 Microsoft. All rights reserved.

Page 9 of 9The Repository Pattern

2013-4-3http://msdn.microsoft.com/en-us/library/ff649690(d=printer).aspx

